回归分析:
A)直线回归:
如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。
B) 多重线性回归:
应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。
1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
线性回归
C) 二分类的Logistic回归:
应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1、非配对的情况:用非条件Logistic回归
(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
2、配对的情况:用条件Logistic回归
(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
Logistic回归
D) 有序多分类有序的Logistic回归:
应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1、观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2、实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
E) 无序多分类有序的Logistic回归:
应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1、观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2、实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
F)聚类分析:
聚类分析是将随机现象归类的多元统计方法,在生物医学之中,聚类分析已成为挖掘海量信息的首选工具。测量n个样本的m个变量,可以进行指标聚类(R型聚类)和样品聚类(Q型聚类)。计算类间的相似系数是进行聚类分析的关键。
上图是聚类分析的树状图